New fixed point index results and nonlinear boundary value problems
نویسندگان
چکیده
منابع مشابه
Multiplicity Results for Second Order Nonlinear Boundary Value Problems via Leggett-Williams Fixed-Point Theorem
Under suitable conditions on f(t, x, x′), the boundary value problems −x′′(t) = f(t, x(t), x′(t)), t ∈ I = [0, 1] αx(0)− βx′(0) = 0, γx(1) + δx′(1) = 0, has at least three positive solutions. We employ the abstract result due to Leggett-Williams (Leggett-Williams fixed-point theorem in ordered Banach spaces) to the boundary value problems to get multiplicity results. Mathematics Subject Classif...
متن کاملNew results of positive solutions for second-order nonlinear three-point integral boundary value problems
In this paper, we investigate the existence of positive solutions for second-order nonlinear three-point integral boundary value problems. By using the Leray-Schauder fixed point theorem, some sufficient conditions for the existence of positive solutions are obtained, which improve the results of literature Tariboon and Sitthiwirattham [J. Tariboon, T. Sitthiwirattham, Boundary Value Problems, ...
متن کاملSinc-Galerkin method for solving a class of nonlinear two-point boundary value problems
In this article, we develop the Sinc-Galerkin method based on double exponential transformation for solving a class of weakly singular nonlinear two-point boundary value problems with nonhomogeneous boundary conditions. Also several examples are solved to show the accuracy efficiency of the presented method. We compare the obtained numerical results with results of the other existing methods in...
متن کاملNew fixed and periodic point results on cone metric spaces
In this paper, several fixed point theorems for T-contraction of two maps on cone metric spaces under normality condition are proved. Obtained results extend and generalize well-known comparable results in the literature.
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the London Mathematical Society
سال: 2017
ISSN: 0024-6093
DOI: 10.1112/blms.12055